

- Candidates should be able to :

Define thinking distance, braking distance and stopping distance.

Analyse and solve problems using the terms thinking distance, braking distance and stopping distance.

Describe the factors that affect thinking distance and braking distance.

Describe and explain how air bags, seat belts and crumple zones in cars reduce impact forces in accidents.

- Describe how air bags work, including the triggering mechanism.
- Describe how the trilateration technique is used in GPS (Global Positioning System) for cars.

The diagram and the table below show the HIGHWAY CODE data on INIMUM STOPPING DISTANCES for cars travelling at different

These are the shortest distances in which a well maintained car can be brought to rest from a given speed, assuming good weather and road conditions as well as an ideal driver (i.e. rested, sober, drug-free and completely focussed).

UNIT G481	Module 2		1.2 .4	Car Safety	
The fact that the braking distance is directly proportional to the square of the vehicle speed can be verified by analysing the figures given in the table on page 1 as shown below. According to the table:					
		$20 \mathrm{mph}=8.9 \mathrm{~m} \mathrm{~s}^{-1}$	40 mph		$60 \mathrm{mph}=26.7 \mathrm{~m} \mathrm{~s}^{-1}$
BRAKI	NCE	6			55

Since BRAKING DISTANCE (s) is proportional to (VEHICLE SPEED) :

$$
\frac{s_{2}}{s_{1}}=\frac{\left(v_{2}\right)^{2}}{\left(v_{1}\right)^{2}}
$$

Then, if $s(20)$, the braking distance at $20 \mathrm{mph}\left(8.9 \mathrm{~ms}^{-1}\right)$ is 6 m , the braking distance at $40 \mathrm{mph}\left(17.8 \mathrm{~m} \mathrm{~s}^{-1}\right), \mathrm{s}(40)$ can be calculated from :

$$
\begin{aligned}
& \frac{s(40)}{s(20)}=\frac{(17.8)^{2}}{(8.9)^{2}}=4 \\
& s(40)=4 \times 6=24 \mathrm{~m} \text { (as shown in the table). }
\end{aligned}
$$

From which :

- PRACTICE QUESTIONS (1)

1 A motorist is driving his BMW in the fast lane of a motorway. The car is travelling at a speed of $100 \mathrm{mph}\left(\approx 44.5 \mathrm{~m} \mathrm{~s}^{-1}\right.$) when the careless driver suddenly realises that there is a stationary lorry directly ahead. At that moment, the distance between the BMW and the lorry is 165 m and the traffic density is such that the BMW driver is unable to steer his car into another lane.
Given that his reaction time is $0.70 s$ and that the BMW decelerates at $6.5 \mathrm{~m} \mathrm{~s}^{-2}$ when the brakes are applied, calculate the car's total stopping distance (assume all other conditions to be ideal). Will the BMW crash into the lorry?

2 Using the figures shown in the table on page 1, plot a graph of THINKING DISTANCE (m) against VEHICLE SPEED ($\mathrm{m} \mathrm{s}^{-1}$). Use the graph to estimate the REACTION TIME.

3 Use the figures shown in the table on page 1 to do this question
(a) Create your own table of (VEHICLE SPEED) $)^{2}\left(v^{2}\right)$ in $\left(m^{2} s^{-2}\right)$ and BRAKING DISTANCE (s) in (m).
(b) Plot a graph of (ι^{2}) against (s).
(c) Rearranging the equation $s=\psi^{2} / 2 a$ gives $\psi^{2}=2 a s$. Compare this equation with the equation for a straight line $(y=m x+c)$ and hence use the graph of $\left(U^{2}\right)$ against (s) to determine the size of the deceleration (a) of a vehicle as it comes to a halt in an emergency.

4 The frictional force between a lorry's tyres and the road it is travelling along is $0.65 \times$ the lorry's weight when the road is level. For a lorry of mass 14000 kg , travelling at $25 \mathrm{~m} \mathrm{~s}^{-1}$ calculate :
(a) The maximum deceleration of the lorry.
(b) The braking distance.

$$
\text { (Assume } g=9.81 \mathrm{~m} \mathrm{~s}^{-2} \text {) }
$$

5 (a) (i) Explain the term THINKING DISTANCE.
(ii) The thinking distance of a person driving a car at $25.5 \mathrm{~ms}^{-1}$ is 18 m . Calculate the person's REACTION TIME.
(b) (i) Explain the term BRAKING DISTANCE.
(ii) The driver of a car travelling at a speed of $25.5 \mathrm{~m} \mathrm{~s}^{-1}$ applies the brakes and the car comes to rest in a braking distance of 50 m . Calculate the car's deceleration.

The purpose of an air-bag is to provide a soft, yielding cushion between the person's upper body (mainly the head) and the steering wheel or dashboard.

The injuries (mainly to the face and chest) which could result in the event
 of a crash are virtually eliminated by the deployment of an air-bag. This is because the air-bag:

- Dramatically reduces the impact
force (F) by extending the impact time (Δt). According to Newton's second law, $F=\Delta(m v) / \Delta t$ and so for a given momentum decrease $\Delta(\mathrm{mv})$, an increase in the impact time (Δt) means a decrease in the impact force (F).
- Significantly reduces the pressure ($p=F / A$) on the face or chest by providing a larger impact area (A) for a given impact force (F).

- In the event of a crash and without an air-bag, the person's head would hit the steering wheel or dashboard about 80 ms after impact. To prevent this, the onset of the crash needs to be detected and the air-bag must be inflated in less than 50 ms . area (A), reducing the pressure ($p=F / A$) Which might otherwise cause injury.

It should also be noted that the air-bag deflates rapidly after impact so as to prevent whiplash injury due to bounce or the possibility of suffocation.

| UNIT G481 | Module 2 | 1.2 .4 | Car Safety |
| :--- | :--- | :--- | :--- | | A tiny accelerometer* is used |
| :--- |
| to detect the very large |
| deceleration which occurs in |
| any vehicular collision and |
| then to trigger the very |
| rapid, explosive inflation of |
| the air-bag. |

First, let's calculate the deceleration produced when the brakes are used to bring a car to rest from $70 \mathrm{mph}\left(\approx 31 \mathrm{~m} \mathrm{~s}^{-1}\right.$). Using the data given on page 1, the braking distance for this speed is 75 m .

$$
\text { Then using } \quad v^{2}=u^{2}+2 \text { as and knowing that } v=0
$$

The deceleration (a) is given by :

$$
a=\frac{-L^{2}}{2 s}=\frac{-31^{2}}{2 \times 75}=-6.4 \mathrm{~ms}^{-2}
$$

Now let's calculate the deceleration produced when a car moving at $70 \mathrm{mph}\left(\approx 31 \mathrm{~m} \mathrm{~s}^{-1}\right.$) crashes and is brought to rest in a very short time ($\dagger \approx 100 \mathrm{~ms}=0.01 \mathrm{~s}$).

The deceleration (a) is given by :

This deceleration is 480 times greater than the deceleration produced by slamming on the brakes to bring the car to a halt from $31 \mathrm{~m} \mathrm{~s}^{-1}$ in a braking distance of 75 m .
in a collision and not when it is heavily braked. To understand why, we need to realise that the deceleration produced in a collision is many times greater than that due to the heaviest braking and the accelerometer is only designed to operate with extremely large
 which is used to trigger the inflation of the air-bag. decelerations.

* The accelerometer consists of two rows of interlocking teeth which will move relative to each other when subjected to the large deceleration produced in a collision. This movement generates a voltage
- The air-bag will only be triggered to inflate when the car is involved
) deceleration (a) is given by

UNIT G481	Module 2	1.2 .4	Car Safety
• CRUMPLE ZONES			

- Another interesting feature is the design of the engine support brackets which will shear in the event of a crash, directing the heavy engine downwards and so preventing it from penetrating the passenger compartment.

On a wet road, water moves up into the tread gaps and is thrown outwards from the tyre as the wheel rotates. This does not happen if the tyres are bald and if the brakes had to be applied, the car would slide along on a virtually frictionless water film between the tyres and the road surface. This could double or even treble the car's braking distance.
A tyre having a tread depth which is less than 1.6 mm over the centre $\frac{3}{4}$ of its breadth is deemed to be 'illegal' and constitutes a motoring offence.
which has been specifically designed so as to squash up or crumple easily in the event of a crash.

The effect of this crumpling is to increase the time (Δt) for the car to come to rest when it is involved in a collision. According to Newton's second law, $\mathrm{F}=\Delta(\mathrm{mv}) / \Delta \dagger$ and so for a given momentum decrease $\Delta(\mathrm{mv})$,
 an increase in the impact time (Δt) means a decrease in the impact
force (F) which acts on the car and passengers.

- Other parts of the car, such as the passenger cell, are designed as a very strong, rigid compartment so as to maximise passenger protection in the event of a collision.
- A CRUMPLE ZONE is a part of a car rection theevent afalion.

UNIT G481	Module 2	1.2 .4	Car Safety
GLOBAL POSITIONING SYSTEM (GPS)			

HOW DOES TRILATERATION WORK?

- The GP system has about 30 satellites placed in high orbits around the Earth such that at any point on the surface of the Earth, three to six of these satellites are above the horizon.
- Each satellite sends out signals giving the satellite's identity, transmission time and the precise position at the time of transmission.

The diagram opposite shows three GPS satellites S_{1}, S_{2} and S_{3} at distances $\mathbf{R}_{1}, \mathrm{R}_{2}$ and R_{3} respectively from the receiver.

So the receiver must lie somewhere on a sphere of radius \mathbf{R}_{1} centred on S_{1}. It must also lie somewhere on a sphere of radius R_{2} centred on S_{2}.

The receiver's position is somewhere on the circle produced by the intersection of the two spheres. It is the distance R_{3} from satellite S_{3} which pinpoints the receiver's actual location on the circle.

This gives the receiver's position on Earth to within a few metres, but a signal from a fourth satellite can make the positioning even more precise.

- Because this requires information from three satellites, the process is called TRILATERATION.

- The receiver on Earth compares these signals with its own clock, measures the time lag and so measures the time from transmission to reception. Using this time and the speed of radio waves in space ($3.0 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$) the receiving system can determine its distance from the satellite.
- Then, using this distance and the satellite's position at the time of transmission, the receiving system calculates its own position.

Car Safety

(a) Explain the following terms when associated with driving a car.
(i) Thinking distance,
(ii) Braking distance.
(b) The graph below shows the variation with speed (v) of the thinking distance (d) for the driver of a car.

(i) Explain why the graph is a straight line through the origin.
(ii) Use the graph to determine the time taken for the driver to react when the car is travelling at $16 \mathrm{~m} \mathrm{~s}^{-1}$.
(iii) The driver is travelling at $30 \mathrm{~m} \mathrm{~s}^{-1}$ in a car which brakes with an acceleration of $-6.5 \mathrm{~m} \mathrm{~s}^{-2}$. Calculate :

1. The thinking distance,
2. The overall stopping distance.
(c) Explain the effect of the road conditions and tyre tread on the stopping distance.
(OCR AS Physics - Module 2821 - May 2002)
(a) Explain the term braking distance in relation to the motion of a road vehicle.

The table below how the braking distance for a car of mass 800 kg varies with its initial speed when a constant braking force is applied.

Speed / $\mathrm{m} \mathrm{s}^{-1}$	0	10	20	30	40
Braking distance / m	0	6	24	54	

(b) Calculate the kinetic energy of the car when it is travelling at $20 \mathrm{~m} \mathrm{~s}^{-1}$.
(c) Explain why the braking distance is NOT proportional to the speed of the car when the braking force is constant.
(d) Calculate the braking distance for this car when it is travelling at $40 \mathrm{~m} \mathrm{~s}^{-1}$, assuming the same braking force is applied.
(e) Discuss in terms of the force acting on the driver of a car, how a seat belt can help to protect the driver from injury in a head-on collision.

Suggest how an air-bag gives additional protection to the driver.
(OCR AS Physics - Module 2821 - June 2003)

